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Abstract—   This paper reviews various optimization 
techniques available for training multi-layer perception (MLP) 
artificial neural networks for compression of images. These 
optimization techniques can be classified into two categories: 
Derivative-based and Derivative free optimization. The former is 
based on the calculation of gradient and includes  Gradient 
Descent, Conjugate gradient, Quasi-Newton, Levenberg-
Marquardt Algorithm  and the latter  cover techniques based on 
evolutionary computation like Genetic  Algorithms, Particle 
Swarm Optimization. The core of this study is to investigate the 
most efficient and effective training algorithm for use in image 
compression.   
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I. INTRODUCTION 

     Images require large amounts of memory for storage and 
the transmission of image from one computer to another over 
the web can be very time consuming. Approximately 224 GB 
is needed to store an uncompressed two-hour SD movie. 
Therefore, to fit such movie on a standard DVD-9, data must 
be compressed by a factor of approximately 26.3. Image 
Compression addresses the problem of reducing the amount 
of data required to represent an image as well as to maintain 
the visual quality of an image.. By using compression 
techniques, it is possible to remove some of the redundant 
information contained in images, thus requiring less storage 
space and less time to transmit. The existing traditional 
techniques mainly are based on reducing redundancies in 
coding, interpixel and psycho visual representation [1]. New 
soft computing technologies such as neural networks are 
being developed for image compression. Adaptive learning, 
self-organisation, noise suppression, fault tolerance, and 
optimized approximations are some main reasons that 
encourage researchers to use artificial 
 neural networks as an image compression approach.  The 
Multilayer Perceptron (MLP) network which uses Back 
propagation training algorithm provides simple and effective 
structures [9]. The compression of images by three-layer 
Back-Propagation Neural Networks (BPNN) is investigated 
by many researchers. Learning algorithms has significant 
impact on the performance of neural networks. This paper 
presents a study that shows the effect of using different 
optimization algorithms on the performance of Multilayer 
Feed Forward Artificial Neural Network (MFFANN) in 
image compression. The paper starts with an Introduction 
followed by an overview of Multilayer Perceptron Artificial 

Neural Network approach in image compression. It then 
explains the functionalities of different learning algorithms 
and finally the conclusion is presented. 

II. IMAGE COMPRESSION USING THREE-LAYERED MLP 

     This section defines the architecture of a Multilayer Feed 
Forward Neural network [9] that is used to compress 
images .The simplest structure is illustrated in Fig 1. It 
consists of one Input Layer and one Output Layer with N 
neurons each and one Hidden Layer with K neurons. 
Compression can be achieved by allowing the value of the 
number of neurons at the hidden layer, K, to be less than that 
of neurons at both input and output layers ( K ≤ N ). 
 

 
Fig. 1  Basic Neural network structure for image compression/decompression 

      
Following steps are required for this process: 

A. Image Preprocessing 

    Input values for network training are created in this step. 
The input image is split up into blocks or vectors of 8×8 
pixels. Normalization of each block from integer values from 
the interval [0,255] to real numbers from the interval [0,255] 
is done. The 2-dimensional blocks are transformed into 1- 
dimensional vectors using linearization methods like scanning 
rows, columns. The Normalized and Linearized input vector 
and the desired output vector is presented to the input neurons 
of the network as it is necessary that desired output vectors 
should be equal to input vectors to achieve compression. 

B. Training                                                                               

Figure1 Network is trained using one of the chosen learning 
algorithms. When the network achieves its goal (calculated 
and desired weight minimization) in a certain number of 
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iterations, its weight matrices have to be stored in parameters. 
In accordance with the structure of neural network shown in 
Figure1, the operation for adjusting weights for compressing 
and de-compressing can be described as the following 
equations. 
 
Hj

in = ∑N
i=1

 Vij Xi   ,      hj = f (Hj
in); 1≤j≤K                           (1) 

X^j
in =∑K

j=1 Wji hj  ,         g(X^in
j);    1≤i≤ N                               (2) 

 
In the above equations, f and g are the activation functions 
which can be linear or nonlinear. Vij and Wji represent the 
weights of compressor and de-compressor, respectively. The 
extracted N × K transform matrix in compressor and K × N in 
de-compressor of linear neural network are in direction of 
PCA transform. This transform provides optimum solution 
for linear narrow channel type of image compression and 
minimizes the mean square error between original and 
reconstructed image. The training process of the neural 
network structure in Fig.1 is iterative and is stopped when the 
weights converge to their true values. In real applications the 
training is stopped when the error of equation (3) reaches to a 
threshold or maximum number of iterations limits the 
iterative process. 
 
E=1 ∑N

k=1( Xk-X
^
k )

2                                                            (3) 
       2                                                             

C. Compression 

 New inputs and desired outputs are fed into input neurons. 
Using previously stored weights, hidden layer output is 
calculated and then observed values are quantified with 8-bits 
and remembered. Stored data is compressed image and image 
dimension in pixels is also remembered to achieve successful 
decompression. Example, to compress an image block of 8×8, 
64 inputs and output neurons are required. In this case, if the 
number of hidden neurons is 16 (i.e. block image of size 4× 
4), the compression ratio would be 64:16=4:1. In general, the 
compression ratio of the basic network illustrated in the Fig. 1 
for an image with n blocks is computed as  
 
   CR= nNBI/ n KBH = NBI/KBH                                             (4)                                                                            
    here BI and  BH are the number of bits needed to code the 
output of input and hidden layers and  N and K are the 
number of neurons in the input and hidden layers, 
respectively. 

D. Decompression 

    To reconstruct compressed image, stored data (compressed 
image) is read and set as hidden layer outputs. Again using 
the stored weight matrices, network output is calculated for 
the hidden layer and the output layer using weights between 
them and thus leads to creation of reconstructed image. 
 

III. NETWORK LEARNING ALGORITHM 

  In this study two categories of optimization algorithms are 
considered i.e. derivative-based and derivative-free. 
 
A. Derivative-based 
    The basic algorithm for training of network is 
backpropagation. On applying some modifications to the 

primary algorithm, other more sophisticated techniques are 
produced. They all generally use gradient of the performance 
function to identify the way how to modify weights and to 
minimize the function. ΔE (w) is gradient vector (g) of error 
function is defined as follows: 
  ΔE (w) = ∂E / ∂w                                                        (5) 
 
Following presents the optimization techniques for weight 
updation in neural networks: 
 Gradient descent(GD)  

 Conjugate Gradient(CG) 

 Quasi Newton(QN) 

 Levenberg Marquardt(LM) 
 
1) Gradient descent: In this technique [2, 7] the 
adjustments applied to the weight vector are in the direction 
opposite to the gradient vector Δ E (w). 

wn+1 = wn + Δwn                                                               (6)  
Δw n= −η ngn + α Δwn                                                       (7) 
 
where g is gradient vector, η is the learning rate or step size 
and α refers to the momentum. Gradient descent only 
indicates the direction to move, however the step size or 
learning rate needs to be decided as well. Too low a learning 
rate makes the network learn very slowly, while too high a 
learning rate will lead to oscillation. One way to avoid 
oscillation for large η is to make the weight change dependent 
on the past weight change which is shown by α. 
 
2) Conjugate Gradient:  The conjugate-gradient method 
[2, 7] reduces oscillatory behavior and adjusts weight 
according to the previously successful path directions as it 
uses a direction vector which is a linear combination of past 
direction vectors and the current negative gradient vector. Let  
p(n) denotes the direction vector at the nth iteration and the 
weight vector of the network is shown as 
wn+1 = wn +η npn                                                               (8)  

  

The initial direction vector, p(0), is set equal to the negative 
gradient vector ,g(0) at the initial weight w(0) and the 
successive direction vectors are computed as a linear 
combination of the current negative gradient vector and the 
previous direction vector. 
pn+1 = −g n+1+ bn pn    where                                                (9)   
 
bn= [ gT

n+1 gn+1]/ [ gT
n gn]                                                   (10) 

 
3) Quasi Newton: Quasi newton method [2,7] use an 
approximation of an inverse Hessian matrix. This method is 
shown as 
wn+1 = wn-ηnBngn                                                                        (11) 
where Bn is approximate inverse Hessian matrix which is 
adjusted from iteration to iteration. The step size ηn is chosen 
by a line search. The important idea behind the method is that 
two successive iterates xn and xn+1 together with the gradients 
Δf(xn) and Δf(xn+1) contain  Hessian information. 
 
Δf ( xn+1) - Δf ( xn) ≈ H ( xn)( xn+1-xn)                                (12) 
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Therefore, at every iteration it would be necessary to choose 
Bn+1 to satisfy 
Bn+1 qn= zn                                                                         (13) 
Where 
Z=xn+1-xn; q= Δf (xn+1 ) - Δf (xn )                                       (14) 
 
Boyden, Fletcher, Goldfarb and Shanno (BFGS) version: 
 

Bn+1=Bn+zzT/q Tq-B nqq TB n/q TB nq + q Bn q T+z/z Tz-Bq/q TBn q                                                                                    
(15) 

 
4)       Levenberg Marquardt:  Levenberg-Marquardt [2]  is a 
trust region based method  that can be applied to the   
Gauss-Newton method [2] . This method can handle well ill-
conditioned matrices  JTJ  in Gauss-Newton method altering 
the equation 
wn+1=wn-( J

TJ)-1 JT e                                                         (16)  
to 
wn+1=wn-( J

TJ+λІ)-1 JT
n en            (17) 

       
where λ is some nonnegative value called learning parameter. 
It is always possible to choose λ sufficiently large enough to 
 ensure a descent step. The learning parameter is decreased  
as the iterative process approaches to a minimum. 
 
B.  Derivative-free 
               Also referred to as Evolutionary Algorithms are 
based on the principles of biological evolution such as genetic 
inheritance and natural selection. These are stochastic 
population-based global search methods that start with an 
initial population of candidate individuals for an optimal 
solution. Two of the popular developed approaches are: 
 Genetic Algorithms(GA) 
  Particle Swarm Optimization(PSO) 
 
Assuming an optimization problem with Nvar input variables 
and Npop individuals (chromosomes or particles), the 
population at the kth iteration is a matrix P(k)Npop×Nvar of 
floating-point elements, denoted by pk

m,n, with each row 
corresponding to an individual.  
               1)    Genetic Algorithms: GA[5,8,14] begins with a 
population of  random chromosomes. Each corresponds to a 
vector with Nvar floating-point optimization variables and 
evaluated by means of its associated cost, which is computed 
through the cost function E given in (3). 
 
chromosome(k,m)=[pk

m,1 , p
k
m,2 , ….. pk

m,Nvar ]   m=1,2,….Npop   
                                                                                                 

(18)  
cost(k,m)=E(chromosome(k,m))                                         (19) 
 
Based on the cost associated to each chromosome, the 
population evolves through generations with the application 
of genetic operators, such as: selection, crossover and 
mutation. Population selection is performed after the Npop 
chromosomes are ranked from lowest to highest costs. Then, 
the most-fit chromosomes are selected to form the mating 
pool and the rest are discarded to make room for the new 
offspring. Mothers and fathers pair in a random fashion. Each 
pair produces two offspring that contain traits from each 

parent. In addition, the parents survive to be part of the next 
generation. After mating, a fraction of chromosomes in the 
population will suffer mutation. Then, the chromosome 
variable selected for real-value  mutation is added to a 
normally distributed random number.  A GA is an iterative 
process. Each iteration is called a generation. A typical 
number of generations for a simple GA can range from 50 to 
over 500. A common practice is to terminate a GA after a 
specified number of generations and then examine the best 
chromosomes in the population. If no satisfactory solution is 
found, then the GA process is restarted. 
 
        2)    Particle Swarm optimization:   PSO [8, 14] is a very 
simple natural optimization algorithm, based on the behaviour 
of swarms in the nature, such as birds, fish, etc. In this 
Algorithm, a candidate solution is presented as a particle. It 
uses a collection of flying particles (changing solutions) in a 
search area as well as the movement towards a promising area 
in order to get to a global optimum. The PSO algorithm 
updates the velocities and positions of the particles based on 
the best local and global solutions. 
 
vk+1

m,n = C[r0 v
k
m,n +Γ1 r1(pm,n

localbest(k) – pm,n
k) + Γ2r2 (pm,n

globalbest(k)– pm,n
k)  

                                                                                    (20)  
pm,n

k+1=  pm,n
k +  vk+1

m,n                                                    (21) 
 
Here, vm,n , is the particle velocity, pm,n , is the particle 
variables,  r0, r1 and r2 are independent uniform random 
numbers. Γ1 and Γ2 are is the cognitive and social 
parameters, respectively, pm,n

localbest(k) and pm,n
globalbest(k) are the 

best local and global solutions, respectively. C is the 
constriction parameter. Like GA, PSO is also an iterative 
process. A typical number of iterations can range from 25 to 
over 200.  
 If the best local solution has a cost less than the best cost of 
the current global solution, then the best local solution 
replaces the best global solution.  
 

IV. CONCLUSION 

In this paper three-layered MLP with different optimization 
algorithms for image compression has been discussed. Based 
on this study it is concluded that Backpropagation is the most 
commonly used technique for updating neural network 
weight parameters. I t has a slow convergence speed and 
might at times diverge. It may be difficult to implement when 
no gradient information is available for all activation 
functions. The BP based gradient descent takes less time 
during training as compared to Conjugate Gradient methods 
and Quasi Newton methods. However Quasi Newton 
performs better in term of minimizing the error. LM and QN 
algorithm-based BPNN networks are equally efficient. LM 
algorithm has fastest network convergence rate, followed  by 
BFGS version of QN. GA and PSO are similar in the sense 
that they are both population-based search approaches and 
that they both depend on information sharing among their 
population members to enhance their search processes using a 
combination of deterministic and probabilistic rules. 
Although PSO and the GA on average yield the same 
effectiveness, PSO is more computationally efficient than the 
GA. 
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