
Analysis of Optimization Techniques for Feed
Forward Neural Networks Based Image

Compression
Neha Relhan, Manoj Jain

CSE Department, Lingaya’s University
 Lingaya’s University, Faridabad, India

Abstract— This paper reviews various optimization
techniques available for training multi-layer perception (MLP)
artificial neural networks for compression of images. These
optimization techniques can be classified into two categories:
Derivative-based and Derivative free optimization. The former is
based on the calculation of gradient and includes Gradient
Descent, Conjugate gradient, Quasi-Newton, Levenberg-
Marquardt Algorithm and the latter cover techniques based on
evolutionary computation like Genetic Algorithms, Particle
Swarm Optimization. The core of this study is to investigate the
most efficient and effective training algorithm for use in image
compression.

Keywords— Multilayer Perceptron, Image Compression/
Decompression, Optimization, Backpropagation

I. INTRODUCTION

 Images require large amounts of memory for storage and
the transmission of image from one computer to another over
the web can be very time consuming. Approximately 224 GB
is needed to store an uncompressed two-hour SD movie.
Therefore, to fit such movie on a standard DVD-9, data must
be compressed by a factor of approximately 26.3. Image
Compression addresses the problem of reducing the amount
of data required to represent an image as well as to maintain
the visual quality of an image.. By using compression
techniques, it is possible to remove some of the redundant
information contained in images, thus requiring less storage
space and less time to transmit. The existing traditional
techniques mainly are based on reducing redundancies in
coding, interpixel and psycho visual representation [1]. New
soft computing technologies such as neural networks are
being developed for image compression. Adaptive learning,
self-organisation, noise suppression, fault tolerance, and
optimized approximations are some main reasons that
encourage researchers to use artificial
 neural networks as an image compression approach. The
Multilayer Perceptron (MLP) network which uses Back
propagation training algorithm provides simple and effective
structures [9]. The compression of images by three-layer
Back-Propagation Neural Networks (BPNN) is investigated
by many researchers. Learning algorithms has significant
impact on the performance of neural networks. This paper
presents a study that shows the effect of using different
optimization algorithms on the performance of Multilayer
Feed Forward Artificial Neural Network (MFFANN) in
image compression. The paper starts with an Introduction
followed by an overview of Multilayer Perceptron Artificial

Neural Network approach in image compression. It then
explains the functionalities of different learning algorithms
and finally the conclusion is presented.

II. IMAGE COMPRESSION USING THREE-LAYERED MLP

 This section defines the architecture of a Multilayer Feed
Forward Neural network [9] that is used to compress
images .The simplest structure is illustrated in Fig 1. It
consists of one Input Layer and one Output Layer with N
neurons each and one Hidden Layer with K neurons.
Compression can be achieved by allowing the value of the
number of neurons at the hidden layer, K, to be less than that
of neurons at both input and output layers (K ≤ N).

Fig. 1 Basic Neural network structure for image compression/decompression

Following steps are required for this process:

A. Image Preprocessing

 Input values for network training are created in this step.
The input image is split up into blocks or vectors of 8×8
pixels. Normalization of each block from integer values from
the interval [0,255] to real numbers from the interval [0,255]
is done. The 2-dimensional blocks are transformed into 1-
dimensional vectors using linearization methods like scanning
rows, columns. The Normalized and Linearized input vector
and the desired output vector is presented to the input neurons
of the network as it is necessary that desired output vectors
should be equal to input vectors to achieve compression.

B. Training

Figure1 Network is trained using one of the chosen learning
algorithms. When the network achieves its goal (calculated
and desired weight minimization) in a certain number of

Neha Relhan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3291-3294

3291

iterations, its weight matrices have to be stored in parameters.
In accordance with the structure of neural network shown in
Figure1, the operation for adjusting weights for compressing
and de-compressing can be described as the following
equations.

Hj

in = ∑N
i=1

 Vij Xi , hj = f (Hj
in); 1≤j≤K (1)

X^j
in =∑K

j=1 Wji hj , g(X^in
j); 1≤i≤ N (2)

In the above equations, f and g are the activation functions
which can be linear or nonlinear. Vij and Wji represent the
weights of compressor and de-compressor, respectively. The
extracted N × K transform matrix in compressor and K × N in
de-compressor of linear neural network are in direction of
PCA transform. This transform provides optimum solution
for linear narrow channel type of image compression and
minimizes the mean square error between original and
reconstructed image. The training process of the neural
network structure in Fig.1 is iterative and is stopped when the
weights converge to their true values. In real applications the
training is stopped when the error of equation (3) reaches to a
threshold or maximum number of iterations limits the
iterative process.

E=1 ∑N

k=1(Xk-X
^
k)

2 (3)
 2

C. Compression

 New inputs and desired outputs are fed into input neurons.
Using previously stored weights, hidden layer output is
calculated and then observed values are quantified with 8-bits
and remembered. Stored data is compressed image and image
dimension in pixels is also remembered to achieve successful
decompression. Example, to compress an image block of 8×8,
64 inputs and output neurons are required. In this case, if the
number of hidden neurons is 16 (i.e. block image of size 4×
4), the compression ratio would be 64:16=4:1. In general, the
compression ratio of the basic network illustrated in the Fig. 1
for an image with n blocks is computed as

 CR= nNBI/ n KBH = NBI/KBH (4)
 here BI and BH are the number of bits needed to code the
output of input and hidden layers and N and K are the
number of neurons in the input and hidden layers,
respectively.

D. Decompression

 To reconstruct compressed image, stored data (compressed
image) is read and set as hidden layer outputs. Again using
the stored weight matrices, network output is calculated for
the hidden layer and the output layer using weights between
them and thus leads to creation of reconstructed image.

III. NETWORK LEARNING ALGORITHM

 In this study two categories of optimization algorithms are
considered i.e. derivative-based and derivative-free.

A. Derivative-based
 The basic algorithm for training of network is
backpropagation. On applying some modifications to the

primary algorithm, other more sophisticated techniques are
produced. They all generally use gradient of the performance
function to identify the way how to modify weights and to
minimize the function. ΔE (w) is gradient vector (g) of error
function is defined as follows:
 ΔE (w) = ∂E / ∂w (5)

Following presents the optimization techniques for weight
updation in neural networks:
 Gradient descent(GD)

 Conjugate Gradient(CG)

 Quasi Newton(QN)

 Levenberg Marquardt(LM)

1) Gradient descent: In this technique [2, 7] the
adjustments applied to the weight vector are in the direction
opposite to the gradient vector Δ E (w).

wn+1 = wn + Δwn (6)
Δw n= −η ngn + α Δwn (7)

where g is gradient vector, η is the learning rate or step size
and α refers to the momentum. Gradient descent only
indicates the direction to move, however the step size or
learning rate needs to be decided as well. Too low a learning
rate makes the network learn very slowly, while too high a
learning rate will lead to oscillation. One way to avoid
oscillation for large η is to make the weight change dependent
on the past weight change which is shown by α.

2) Conjugate Gradient: The conjugate-gradient method
[2, 7] reduces oscillatory behavior and adjusts weight
according to the previously successful path directions as it
uses a direction vector which is a linear combination of past
direction vectors and the current negative gradient vector. Let
p(n) denotes the direction vector at the nth iteration and the
weight vector of the network is shown as
wn+1 = wn +η npn (8)

The initial direction vector, p(0), is set equal to the negative
gradient vector ,g(0) at the initial weight w(0) and the
successive direction vectors are computed as a linear
combination of the current negative gradient vector and the
previous direction vector.
pn+1 = −g n+1+ bn pn where (9)

bn= [gT

n+1 gn+1]/ [gT
n gn] (10)

3) Quasi Newton: Quasi newton method [2,7] use an
approximation of an inverse Hessian matrix. This method is
shown as
wn+1 = wn-ηnBngn (11)
where Bn is approximate inverse Hessian matrix which is
adjusted from iteration to iteration. The step size ηn is chosen
by a line search. The important idea behind the method is that
two successive iterates xn and xn+1 together with the gradients
Δf(xn) and Δf(xn+1) contain Hessian information.

Δf (xn+1) - Δf (xn) ≈ H (xn)(xn+1-xn) (12)

Neha Relhan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3291-3294

3292

Therefore, at every iteration it would be necessary to choose
Bn+1 to satisfy
Bn+1 qn= zn (13)
Where
Z=xn+1-xn; q= Δf (xn+1) - Δf (xn) (14)

Boyden, Fletcher, Goldfarb and Shanno (BFGS) version:

Bn+1=Bn+zzT/q Tq-B nqq TB n/q TB nq + q Bn q T+z/z Tz-Bq/q TBn q
(15)

4) Levenberg Marquardt: Levenberg-Marquardt [2] is a
trust region based method that can be applied to the
Gauss-Newton method [2] . This method can handle well ill-
conditioned matrices JTJ in Gauss-Newton method altering
the equation
wn+1=wn-(J

TJ)-1 JT e (16)
to
wn+1=wn-(J

TJ+λІ)-1 JT
n en (17)

where λ is some nonnegative value called learning parameter.
It is always possible to choose λ sufficiently large enough to
 ensure a descent step. The learning parameter is decreased
as the iterative process approaches to a minimum.

B. Derivative-free
 Also referred to as Evolutionary Algorithms are
based on the principles of biological evolution such as genetic
inheritance and natural selection. These are stochastic
population-based global search methods that start with an
initial population of candidate individuals for an optimal
solution. Two of the popular developed approaches are:
 Genetic Algorithms(GA)
 Particle Swarm Optimization(PSO)

Assuming an optimization problem with Nvar input variables
and Npop individuals (chromosomes or particles), the
population at the kth iteration is a matrix P(k)Npop×Nvar of
floating-point elements, denoted by pk

m,n, with each row
corresponding to an individual.
 1) Genetic Algorithms: GA[5,8,14] begins with a
population of random chromosomes. Each corresponds to a
vector with Nvar floating-point optimization variables and
evaluated by means of its associated cost, which is computed
through the cost function E given in (3).

chromosome(k,m)=[pk

m,1 , p
k
m,2 , ….. pk

m,Nvar] m=1,2,….Npop

(18)
cost(k,m)=E(chromosome(k,m)) (19)

Based on the cost associated to each chromosome, the
population evolves through generations with the application
of genetic operators, such as: selection, crossover and
mutation. Population selection is performed after the Npop
chromosomes are ranked from lowest to highest costs. Then,
the most-fit chromosomes are selected to form the mating
pool and the rest are discarded to make room for the new
offspring. Mothers and fathers pair in a random fashion. Each
pair produces two offspring that contain traits from each

parent. In addition, the parents survive to be part of the next
generation. After mating, a fraction of chromosomes in the
population will suffer mutation. Then, the chromosome
variable selected for real-value mutation is added to a
normally distributed random number. A GA is an iterative
process. Each iteration is called a generation. A typical
number of generations for a simple GA can range from 50 to
over 500. A common practice is to terminate a GA after a
specified number of generations and then examine the best
chromosomes in the population. If no satisfactory solution is
found, then the GA process is restarted.

 2) Particle Swarm optimization: PSO [8, 14] is a very
simple natural optimization algorithm, based on the behaviour
of swarms in the nature, such as birds, fish, etc. In this
Algorithm, a candidate solution is presented as a particle. It
uses a collection of flying particles (changing solutions) in a
search area as well as the movement towards a promising area
in order to get to a global optimum. The PSO algorithm
updates the velocities and positions of the particles based on
the best local and global solutions.

vk+1

m,n = C[r0 v
k
m,n +Γ1 r1(pm,n

localbest(k) – pm,n
k) + Γ2r2 (pm,n

globalbest(k)– pm,n
k)

 (20)
pm,n

k+1= pm,n
k + vk+1

m,n (21)

Here, vm,n , is the particle velocity, pm,n , is the particle
variables, r0, r1 and r2 are independent uniform random
numbers. Γ1 and Γ2 are is the cognitive and social
parameters, respectively, pm,n

localbest(k) and pm,n
globalbest(k) are the

best local and global solutions, respectively. C is the
constriction parameter. Like GA, PSO is also an iterative
process. A typical number of iterations can range from 25 to
over 200.
 If the best local solution has a cost less than the best cost of
the current global solution, then the best local solution
replaces the best global solution.

IV. CONCLUSION

In this paper three-layered MLP with different optimization
algorithms for image compression has been discussed. Based
on this study it is concluded that Backpropagation is the most
commonly used technique for updating neural network
weight parameters. I t has a slow convergence speed and
might at times diverge. It may be difficult to implement when
no gradient information is available for all activation
functions. The BP based gradient descent takes less time
during training as compared to Conjugate Gradient methods
and Quasi Newton methods. However Quasi Newton
performs better in term of minimizing the error. LM and QN
algorithm-based BPNN networks are equally efficient. LM
algorithm has fastest network convergence rate, followed by
BFGS version of QN. GA and PSO are similar in the sense
that they are both population-based search approaches and
that they both depend on information sharing among their
population members to enhance their search processes using a
combination of deterministic and probabilistic rules.
Although PSO and the GA on average yield the same
effectiveness, PSO is more computationally efficient than the
GA.

Neha Relhan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3291-3294

3293

REFERENCES

[1] R. C. Gonzales, R. E. Woods, Digital Image Processing, Second Edition,
Prentice-Hall.

[2] Jyh-Shing, Roger Jang, Chuen-Tsai Sun, Eiji Mizutani, Neuro Fuzzy and
Soft Computing, Prentice-Hall.

[3] Robert D. Dony, Neural Network Approaches to Image Compression,
Proceedings of the IEEE, Vol.83, No.2, Feb1995.

[4] J.Jiang, “Image Compression with Neural Networks-A survey”,Sigmal
Processing: Image Communication 14(1999) 737-760.

[5] Merlo G.,Caram,F, Fernandez V. ,Britos, P. Rossi, B. & Garcia-Martinez
R. , Genetic Algorithm Based Image Compression, SBAI,1999.

[6] M.Egmont-Petersen, D. de Ridder, H. Handels, Image Processing with
neural networks- a review, The Journal of Pattern Recognition 35(2002)
2279-2301.

[7] Omer Mahmoud, Farhat Anwar,Momoh Jimoh E. Salami, Learning
algorithm effect on multilayer feedforward neural network performance
in image coding, Journal of Engineering Science and Technology, Vol. 2,
No. 2(2007) 188-199.

[8] Jing-Ru Zhang, Jun Zhang, Tat-Ming Lok, Michael R. Lyu, A hybrid
Particle Swarm Optimization-back- propagationalgorithm for feed

forward neural network training, Applied Mathematics and Computation
185(2007) 1026-1037.

[9] Hadi Veisi, Mansour Jamzad, A complexity-based approach in image
compression using neural networks, World Academy of Science,
Engineering and Technology, 59 2009.

[10] Davoud Sedighizadeh and Ellips Masehian, PSO Methods,Taxonomy &
Applications, International Journal of Computer Theory and Engineering,
Vol. 1, No. 5, December 2009.

[11] Venkata Rama Prasad Vaddella, Kurupati Rama, Artificial Neural
Networks for Compression of Digital Images: A Review, International
Journal of Revies in Computing, 2009-2010.

[12] David J. Montana and Lawrence Davis, Training Feed Forward Neural
Networks Using Genetic Algorithms.

[13] Dubravka Ilic, Ivana Berkovic, Grayscle Image Compression Using Back
propagation Neural Network.

[14] Rossana M.S. Cruz, Helton M. Peixoto and Rafael M. Magalhaes,
Artificial Neural Networks and Efficient Optimization Techniques for
Applications in Engineering.

[15] Brian Clow, Tony White , An Evolutinary Race: A Conparison of
Genetic Algorithms and Particle Swarm optimization Used for Training
Neural Networks.

Neha Relhan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3291-3294

3294

